Proceedings
Proceedings
Proceedings

Cover Gallery

How Reproducible are Surface Areas Calculated from the BET Equation?
How Reproducible are Surface Areas Calculated from the BET Equation?
Extensive Screening of Solvent-linked Porous Polymers through Friedel-Crafts Reaction for Gas Adsorption
Extensive Screening of Solvent-linked Porous Polymers through Friedel-Crafts Reaction for Gas Adsorption
Alkyl-linked porphyrin porous polymers for gas capture and precious metal adsorption
Alkyl-linked porphyrin porous polymers for gas capture and precious metal adsorption
Quantifying the nitrogen effect on CO2 capture using isoporous network polymers
Quantifying the nitrogen effect on CO2 capture using isoporous network polymers
Direct Access to Primary Amines and Particle Morphology Control in Nanoporous CO2 Sorbents
Direct Access to Primary Amines and Particle Morphology Control in Nanoporous CO2 Sorbents
Enhanced Sorption Cycle Stability and Kinetics of CO2 on Lithium Silicates Using the Lithium Ion Channeling Effect of TiO2 Nanotubes
Enhanced Sorption Cycle Stability and Kinetics of CO2 on Lithium Silicates Using the Lithium Ion Channeling Effect of TiO2 Nanotubes
  • Boronization of Nickel Foam for Sustainable Electrochemical Reduction of Nitrate to Ammonia

    Zhong-Hua Xue, Han-Cheng Shen, Peirong Chen, Guang-Xue Pan, Wei-Wei Zhang, Wei-Meng Zhang, Shi-Nan Zhang, Xin-Hao Li, Cafer T Yavuz
    ACS Energy Letters, 8, 3843-3851
    2023
    Boronization of Nickel Foam for Sustainable Electrochemical Reduction of Nitrate to Ammonia
    Electrochemical reduction of aqueous nitrates has emerged as a sustainable and practical approach in combining water treatment and ammonia fertilizer synthesis. However, the development of highly integrated catalytic electrodes with consistently high activity from non-noble metals remains a challenging issue despite the potential to greatly decrease costs and promote real-world applications. Here, we report a high-performance electrode with electron-abundant surfaces obtained from direct boronization of nickel foam, rendering a stable ammonia yield rate of 19.2 mg h–1 cm–2 with high Faradaic efficiency of 94% for NO3–-to-NH3 conversion. The microprocessing lowers the work function and initiates a local electric field for the nickel foam by converting acid-stable surface nickel oxides into dyadic nanosheets composed of metallic nickel and amorphous nickel borates, thus promoting the adsorption and transformation of nitrate anions. Furthermore, the spent electrode enables a rapid and effective regeneration by undergoing another round of boronization, which ensures a long lifetime for the practical application of our electrode design.
  • nnentitelbild: Covalent Scrambling in Porous Polyarylthioethers through a Stepwise SNAr for Tunable Bandgap and Porosity

    Doyun Kim, Thien S Nguyen, Hyejeong Lee, Bolormaa Bayarkhuu, Vepa Rozyyev, Jeehye Byun, Sheng Li, Cafer T Yavuz
    Angewandte Chemie,135,28,e202306118
    2023
    nnentitelbild: Covalent Scrambling in Porous Polyarylthioethers through a Stepwise SNAr for Tunable Bandgap and Porosity
    A polycondensation reaction constitutes the simplest route to generating porous poly(aryl thioether)s. Through a multi-para-nucleophilic substitution of perfluoroaromatic compounds with sodium sulfide, temperature-dependent formation of thioether linkages leads to stepwise transition of the polymers into network structures with controllable porosity and bandgap, as reported by Jeehye Byun, Sheng Li, Cafer T. Yavuz, and co-workers in their Research Article (e202304378).
  • Synthesis of stable single-crystalline carbon dioxide clathrate powder by pressure swing crystallization

    Zhiling Xiang, Congyan Liu, Chunhui Chen, Xin Xiao, Thien S Nguyen, Cafer T Yavuz, Qiang Xu, Bo Liu
    Cell Reports Physical Science, 4, 101383
    2023
    Synthesis of stable single-crystalline carbon dioxide clathrate powder by pressure swing crystallization
    Reversible CO2 capture and release under ambient conditions is crucial for energy-efficient carbon capture and storage. Here, we report the pressure swing crystallization of CO2 in a single-crystalline guanidinium sulfate-based clathrate salt under practical conditions of 52 kPa and 298 K, with a high CO2 density (0.252 g cm3 ) and capacity (17 wt %). The captured CO2 is released as a pure stream through moderate means of pressure or temperature stimulation, all while the desorbed Gua2SO4 is ready for another cycle. The clathrate is selective exclusively to CO2 even in the presence of common flue gas components, such as water vapor and N2, owing to the specific electrostatic interaction between the CO2 and guanidinium cations. The mechanism unraveled through single-crystal studies is distinctively different from physisorption or chemisorption, opening up a promising venue for future carbon capture and storage technologies through rapid CO2 solidification using an abundant salt.
  • Sintering-free catalytic ammonia cracking by vertically standing 2D porous framework supported Ru nanocatalysts

    Seok-Jin Kim, Thien Si Nguyen, Javeed Mahmood, Cafer T Yavuz
    Chemical Engineering Journal, 463,142474
    2023
    Sintering-free catalytic ammonia cracking by vertically standing 2D porous framework supported Ru nanocatalysts
    Catalytic ammonia decomposition enables ammonia to be a hydrogen gas carrier for a carbon-free fuel economy. The challenge is to obtain high conversion yields and rates at low temperatures for a prolonged time. A promising approach is to engineer a catalyst support to minimize deleterious effects like sintering. Here, we compared a conventional 2D planar porous framework support with a vertically standing 2D structure to ascertain the effects of support geometry on the catalytic performance. The catalysts were made by loading ruthenium (Ru) nanoparticles onto the structures, and the catalytic activities were monitored by varying the ammonia (NH3) feeding rate and reaction temperature. Unlike the planar version, the vertically standing 2D support prevented nanoparticle aggregation, retained the original nanoparticle size, and showed an excellent hydrogen production rate (95.17 mmol gRu−1 min−1) at a high flow rate of 32,000 mL gcat−1 h−1 at a temperature of 450 °C.
  • Selective palladium recovery by a highly porous polyisothiocyanurate

    Thien S Nguyen, Cafer T Yavuz
    Chem,8,7,1793-1796
    2022
    Selective palladium recovery by a highly porous polyisothiocyanurate
    Precious metals, particularly palladium (Pd), are in short supply, and their effective recovery from waste depends on metal-specific adsorbents that provide energy-efficient and environmentally friendly solutions. In this issue of Chem, Coskun and co-workers introduce a new porous organic polymer with exceptional porosity and stability and record-high capacity and selectivity toward Pd.
  • How to reach carbon emission targets with technology and public awareness

    Cafer T Yavuz
    Matter
    2022
    How to reach carbon emission targets with technology and public awareness
    Our best option in curbing greenhouse gas emissions is to include heavy carbon emitters in a viable, sustainable, transitional solution based on a versatile syngas-based circular carbon economy and to establish a universal carbon emissions metric rather than fighting an endless war of politics, policies, and empty promises.
  • Solvent-linked porous covalent organic polymers and method of preparing the same

    US Patent 11,535,701,2022
    Cafer T Yavuz, Vepa Rozyyev, Joo Sung Lee
    Solvent-linked porous covalent organic polymers (COPs) and a method of preparing the same are described. The porous covalent organic polymers are linked by a solvent and are thus suitable for the transportation and storage of natural gas. A method of preparing the porous covalent organic polymers by conducting alkylation polymerization between an aromatic monomer and a chlorine-based solvent in the presence of a Lewis acid catalyst is described. Porous stretchable covalent organic polymers having pores with various sizes can be synthesized simply and quickly at room temperature and atmospheric pressure without a heating or purification step. The covalent organic polymers have very high natural gas storage capacity due to the flexible porous network structure thereof and thus are suitable for storage and transportation of natural gas and useful as a natural gas adsorbent.
    Granted
  • Electroless plating solution and electroless plating method for recovering precious metal adsorbed on porous porphyrin polymer

    US Patent App. 17/413,559, 2022
    Jong-In Han, SON JiEun, Cafer Yavuz, HONG Youngran
    The present invention relates to a method for recovering a precious metal selectively adsorbed on a porous porphyrin polymer, and to an electroless plating method capable of recovering a precious metal in a film form by desorbing and leaching the precious metal without an additional oxidizing agent and using same as a plating solution to reduce the precious metal on the surface of a substrate without an additional reducing agent.
    Pending
  • The electrochemical plating apparatus for recovering a noble metal adsorbed to the porous polymeric porphyrin

    App # 10-2018-0162180, 2018.
    C. T. Yavuz, Y. Hong
    The present invention relates to an apparatus and a method of electrochemical plating for recovering precious metals adsorbed on a porous porphyrin polymer, wherein precious metals selectively adsorbed on a porous porphyrin polymer is leached into an electrolyte to be collected in a film shape on a surface of a reducing electrode through electrochemical reduction reaction.COPYRIGHT KIPO 2020
    Registered
  • Natural gas storage utilizing the elastic organic polymer covalent bond which is connected to the solvent

    App # 10-2019-0058296, 2019.
    C. T. Yavuz, V. Rozyyev
    The present invention relates to solvent linked porous covalent organic polymers and a method for preparing the same. More particularly, the present invention relates to porous covalent organic polymers linked by a solvent, thereby being suitable for transport and storage of natural gas, and to a method for preparing the porous covalent organic polymers by adding an aromatic monomer and a chlorine-based solvent in the presence of a Lewis acid catalyst, followed by alkylation. Under the conditions of room temperature and room pressure, it is possible to synthesize porous, elastic and covalent organic polymers having pores of various sizes simply and quickly without a heating step or a purification step. Also, the covalent organic polymers can be used in various ways as an adsorbent for natural gas because the storage capacity of natural gas is very high due to a flexible porous network structure of the covalent organic polymers, thereby being suitable for transport and storage of natural gas.COPYRIGHT KIPO 2021
    Registered
  • Magnetic Purification of a Sample

    US 7,938,969. May 10, 2011.
    C. T. Yavuz, V. L. Colvin, W. W. Yu, J. T. Mayo
    Methods for separating magnetic nanoparticles are provided. In certain embodiments, a method is provided for separating magnetic nanoparticles comprising: providing a sample comprising a plurality of magnetic nanoparticles; passing the sample through a first magnetic field; at least partially isolating nanoparticles of the first nanoparticle size desired; altering the strength of the first magnetic field to produce a second magnetic field; and at least partially isolating nanoparticles of the second nanoparticle size desired.
    Granted
  • Disulfide-Linked Covalent Organic Polymers and Method of Preparing the Same

    US 9,346,918. May 24, 2016
    H. A. Patel, C. T. Yavuz
    A disulfide-linked covalent organic polymer and a preparation method thereof are described, and more particularly a disulfide-linked covalent organic polymer prepared by a disulfide formation reaction, a preparation method thereof, and the use of the organic polymer as an organic solvent absorbent. A disulfide-linked covalent organic polymer prepared according to the disclosure may be used as an absorbent capable of selectively absorbing various organic solvents in aqueous solutions or wastewater.
    Granted
  • Engineered nanoparticles for water treatment application

    J. Byun, C. T. Yavuz
    2016
    Chapter 2 in Engineered Nanoparticles and the Environment: Biophysicochemical Processes and Toxicity, Edited by B. Xing, C. D. Vecitis, N. Senesi. WILEY-IUPAC Series in Biophysico-Chemical Processes in Environmental Systems Published by John Wiley & Sons, Inc. In this chapter, water treatment processes using nanoparticles and studies related to the removal of waterborne contaminants, such as anionic, cationic, and organic pollutants, will be reviewed.
    Engineered nanoparticles for water treatment application
  • Nano Rust

    Cafer T. Yavuz
    2008
    My first book was recently published via VDM Verlag. Thanks to Gabriel Caruntu for hooking me up with them. If you're interested in buying please click here, it's only $116(!). Here's the blurb from the back: This work describes the first size dependent magneticseparation in nanoscale by using rust like iron oxide. Magnetite (Fe3O4) nanocrystals of high quality and uniform size (4 nm to 33 nm) were synthesized. Batch synthesis was shown to go up to 20 grams which is more than 10 times of a standard nanocrystal synthesis, without loosing the quality and monodispersity. Reactor design for mass (1 gram per hour) production of magnetite nanocrystals isreported for the first time. A green synthesis thatutilizes rust and edible oils was developed. The cost of a kg of magnetite nanocrystals was brought down from $2600 to $22. Size dependency of magnetism was shown in nanoscale for the first time. Reversible aggregation theory was developed to explain the low field magnetic separation and solution behavior of magnetite nanocrystals. Arsenic was removed from drinking water with magnetite nanocrystals 200 times better than commercial adsorbents. Silica coating was successfully applied and magnetite - silica nanoshells were functionalized with amino groups. For the first time, silver was coated on the magnetite -silica nanoshells to produce triple multishells.
    Nano Rust
  • NEW BOOK

    test
    Abstract
    test

Contact us now

Looking forward to creating value with you

Learn More >>